Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Patterns (N Y) ; : 100659, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2242541

RESUMEN

A significant percentage of COVID-19 survivors experience ongoing multisystemic symptoms that often affect daily living, a condition known as Long Covid or post-acute-sequelae of SARS-CoV-2 infection. However, identifying scientific articles relevant to Long Covid is challenging since there is no standardized or consensus terminology. We developed an iterative human-in-the-loop machine learning framework combining data programming with active learning into a robust ensemble model, demonstrating higher specificity and considerably higher sensitivity than other methods. Analysis of the Long Covid collection shows that (1) most Long Covid articles do not refer to Long Covid by any name (2) when the condition is named, the name used most frequently in the literature is Long Covid, and (3) Long Covid is associated with disorders in a wide variety of body systems. The Long Covid collection is updated weekly and is searchable online at the LitCovid portal: https://www.ncbi.nlm.nih.gov/research/coronavirus/docsum?filters=e_condition.LongCovid.

2.
Nucleic Acids Res ; 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2228813

RESUMEN

LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/)-first launched in February 2020-is a first-of-its-kind literature hub for tracking up-to-date published research on COVID-19. The number of articles in LitCovid has increased from 55 000 to ∼300 000 over the past 2.5 years, with a consistent growth rate of ∼10 000 articles per month. In addition to the rapid literature growth, the COVID-19 pandemic has evolved dramatically. For instance, the Omicron variant has now accounted for over 98% of new infections in the United States. In response to the continuing evolution of the COVID-19 pandemic, this article describes significant updates to LitCovid over the last 2 years. First, we introduced the long Covid collection consisting of the articles on COVID-19 survivors experiencing ongoing multisystemic symptoms, including respiratory issues, cardiovascular disease, cognitive impairment, and profound fatigue. Second, we provided new annotations on the latest COVID-19 strains and vaccines mentioned in the literature. Third, we improved several existing features with more accurate machine learning algorithms for annotating topics and classifying articles relevant to COVID-19. LitCovid has been widely used with millions of accesses by users worldwide on various information needs and continues to play a critical role in collecting, curating and standardizing the latest knowledge on the COVID-19 literature.

3.
Database (Oxford) ; 20222022 08 31.
Artículo en Inglés | MEDLINE | ID: covidwho-2017881

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic has been severely impacting global society since December 2019. The related findings such as vaccine and drug development have been reported in biomedical literature-at a rate of about 10 000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation and interpretation. For instance, LitCovid is a literature database of COVID-19-related articles in PubMed, which has accumulated more than 200 000 articles with millions of accesses each month by users worldwide. One primary curation task is to assign up to eight topics (e.g. Diagnosis and Treatment) to the articles in LitCovid. The annotated topics have been widely used for navigating the COVID literature, rapidly locating articles of interest and other downstream studies. However, annotating the topics has been the bottleneck of manual curation. Despite the continuing advances in biomedical text-mining methods, few have been dedicated to topic annotations in COVID-19 literature. To close the gap, we organized the BioCreative LitCovid track to call for a community effort to tackle automated topic annotation for COVID-19 literature. The BioCreative LitCovid dataset-consisting of over 30 000 articles with manually reviewed topics-was created for training and testing. It is one of the largest multi-label classification datasets in biomedical scientific literature. Nineteen teams worldwide participated and made 80 submissions in total. Most teams used hybrid systems based on transformers. The highest performing submissions achieved 0.8875, 0.9181 and 0.9394 for macro-F1-score, micro-F1-score and instance-based F1-score, respectively. Notably, these scores are substantially higher (e.g. 12%, higher for macro F1-score) than the corresponding scores of the state-of-art multi-label classification method. The level of participation and results demonstrate a successful track and help close the gap between dataset curation and method development. The dataset is publicly available via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ for benchmarking and further development. Database URL https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Minería de Datos/métodos , Bases de Datos Factuales , Humanos , PubMed , Publicaciones
4.
IEEE/ACM Trans Comput Biol Bioinform ; 19(5): 2584-2595, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1831866

RESUMEN

The rapid growth of biomedical literature poses a significant challenge for curation and interpretation. This has become more evident during the COVID-19 pandemic. LitCovid, a literature database of COVID-19 related papers in PubMed, has accumulated over 200,000 articles with millions of accesses. Approximately 10,000 new articles are added to LitCovid every month. A main curation task in LitCovid is topic annotation where an article is assigned with up to eight topics, e.g., Treatment and Diagnosis. The annotated topics have been widely used both in LitCovid (e.g., accounting for ∼18% of total uses) and downstream studies such as network generation. However, it has been a primary curation bottleneck due to the nature of the task and the rapid literature growth. This study proposes LITMC-BERT, a transformer-based multi-label classification method in biomedical literature. It uses a shared transformer backbone for all the labels while also captures label-specific features and the correlations between label pairs. We compare LITMC-BERT with three baseline models on two datasets. Its micro-F1 and instance-based F1 are 5% and 4% higher than the current best results, respectively, and only requires ∼18% of the inference time than the Binary BERT baseline. The related datasets and models are available via https://github.com/ncbi/ml-transformer.


Asunto(s)
COVID-19 , Minería de Datos , Minería de Datos/métodos , Bases de Datos Factuales , Humanos , Pandemias , Publicaciones
5.
Annu Rev Biomed Data Sci ; 4: 313-339, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1346098

RESUMEN

The COVID-19 (coronavirus disease 2019) pandemic has had a significant impact on society, both because of the serious health effects of COVID-19 and because of public health measures implemented to slow its spread. Many of these difficulties are fundamentally information needs; attempts to address these needs have caused an information overload for both researchers and the public. Natural language processing (NLP)-the branch of artificial intelligence that interprets human language-can be applied to address many of the information needs made urgent by the COVID-19 pandemic. This review surveys approximately 150 NLP studies and more than 50 systems and datasets addressing the COVID-19 pandemic. We detail work on four core NLP tasks: information retrieval, named entity recognition, literature-based discovery, and question answering. We also describe work that directly addresses aspects of the pandemic through four additional tasks: topic modeling, sentiment and emotion analysis, caseload forecasting, and misinformation detection. We conclude by discussing observable trends and remaining challenges.


Asunto(s)
COVID-19/epidemiología , Almacenamiento y Recuperación de la Información/métodos , Procesamiento de Lenguaje Natural , Comunicación , Minería de Datos/métodos , Conjuntos de Datos como Asunto , Emociones , Humanos , Descubrimiento del Conocimiento , Pandemias , Publicaciones Periódicas como Asunto , Programas Informáticos
6.
Nucleic Acids Res ; 49(W1): W352-W358, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1317922

RESUMEN

Searching and reading relevant literature is a routine practice in biomedical research. However, it is challenging for a user to design optimal search queries using all the keywords related to a given topic. As such, existing search systems such as PubMed often return suboptimal results. Several computational methods have been proposed as an effective alternative to keyword-based query methods for literature recommendation. However, those methods require specialized knowledge in machine learning and natural language processing, which can make them difficult for biologists to utilize. In this paper, we propose LitSuggest, a web server that provides an all-in-one literature recommendation and curation service to help biomedical researchers stay up to date with scientific literature. LitSuggest combines advanced machine learning techniques for suggesting relevant PubMed articles with high accuracy. In addition to innovative text-processing methods, LitSuggest offers multiple advantages over existing tools. First, LitSuggest allows users to curate, organize, and download classification results in a single interface. Second, users can easily fine-tune LitSuggest results by updating the training corpus. Third, results can be readily shared, enabling collaborative analysis and curation of scientific literature. Finally, LitSuggest provides an automated personalized weekly digest of newly published articles for each user's project. LitSuggest is publicly available at https://www.ncbi.nlm.nih.gov/research/litsuggest.


Asunto(s)
Publicaciones , Programas Informáticos , COVID-19 , Curaduría de Datos , Disparidades en Atención de Salud , Humanos , Internet , Neoplasias Hepáticas/epidemiología , Aprendizaje Automático
7.
Nucleic Acids Res ; 49(D1): D1534-D1540, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1117391

RESUMEN

Since the outbreak of the current pandemic in 2020, there has been a rapid growth of published articles on COVID-19 and SARS-CoV-2, with about 10,000 new articles added each month. This is causing an increasingly serious information overload, making it difficult for scientists, healthcare professionals and the general public to remain up to date on the latest SARS-CoV-2 and COVID-19 research. Hence, we developed LitCovid (https://www.ncbi.nlm.nih.gov/research/coronavirus/), a curated literature hub, to track up-to-date scientific information in PubMed. LitCovid is updated daily with newly identified relevant articles organized into curated categories. To support manual curation, advanced machine-learning and deep-learning algorithms have been developed, evaluated and integrated into the curation workflow. To the best of our knowledge, LitCovid is the first-of-its-kind COVID-19-specific literature resource, with all of its collected articles and curated data freely available. Since its release, LitCovid has been widely used, with millions of accesses by users worldwide for various information needs, such as evidence synthesis, drug discovery and text and data mining, among others.


Asunto(s)
COVID-19/prevención & control , Curaduría de Datos/estadística & datos numéricos , Minería de Datos/estadística & datos numéricos , Bases de Datos Factuales , PubMed/estadística & datos numéricos , SARS-CoV-2/aislamiento & purificación , COVID-19/epidemiología , COVID-19/virología , Curaduría de Datos/métodos , Minería de Datos/métodos , Humanos , Internet , Aprendizaje Automático , Pandemias , Publicaciones/estadística & datos numéricos , SARS-CoV-2/fisiología
9.
No convencional en 8 | WHO COVID | ID: covidwho-636570
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA